
3. daisy:251 (Michael, C. C.)

4. daisy:197 (Lavenhar, Steven)

Source Code Analysis Tools - Overview
Christoph Michael, Cigital, Inc. [vita3]
Steven R. Lavenhar, Cigital, Inc. [vita4]

Copyright © 2005, 2006 Cigital, Inc.

2006-01-27

A security analyzer is an automated tool for helping analysts find security-related problems in software.
This article outlines what automated security analyzers can do and provides some criteria for evaluating
individual tools.

Introduction

The impetus for security analyzers originally came with the realization that many software
vulnerabilities are in reusable library functions, so programs could be scanned to check whether they
contain any calls to those functions. This process is more or less equivalent to opening the source code
in an editor and searching for the name of vulnerable functions like strcpy() and stat().

Modern security analyzers are more sophisticated; they use data- and control-flow analysis to find
subtler bugs and to reduce false alarms. They focus on building security in software source code, trying
to automate some of the tasks that a human analyst might perform. Unfortunately, these tools are still not
capable of replacing a human analyst.

Currently, security analyzers do not unambiguously and flawlessly detect vulnerabilities, and it is
therefore erroneous to refer to such a tool as a vulnerability detector. While there are some
vulnerabilities that can be detected with high accuracy, others are harder to detect, and, in fact, one can
always devise vulnerabilities that are undetectable altogether. Security analyzers are used to make
human analysts more efficient; they automate certain mechanical tasks and even certain tasks that are
easier for machines than for humans.

However, a security analyzer cannot generate too many false alarms if it is to increase the efficiency of
human analysts. Otherwise, too much time is needed for separating the false alarms from the true
vulnerabilities. For most security analyzers there is a tradeoff between false alarms (also known as false
positives) and missed vulnerabilities (also known as false negatives). Obviously a tool that has fewer
false negatives is a good thing because analysts want to catch as many vulnerabilities as possible. On the
other hand, false positives make the tool less effective, since much of the analyst’s time must be spent
weeding them out. It is relatively easy to make a tool more sensitive (decreasing false negatives while
increasing false positives) or make it less sensitive (increasing false negatives while decreasing false
positives), but most modern security analyzers try to tackle the harder task of decreasing false positives
and false negatives at the same time.

While decreasing false positives and false negatives may be the mantra in most of the security scanning
industry, there are also some security analyzers that avoid this difficulty by positioning themselves as
detectors of dangerous programming practices. In other words, they are based on the same philosophy
as the classic lint source code checker: it is the developer’s job to write code that does not make the
security analyzer generate warnings. Like lint, these tools are likely to increase the robustness of the
software if they are applied consistently from the start of the development process. On the other hand,
applying them to a large, pre-existing codebase is likely to be impractical.

Source Code Analysis Tools - Overview 1
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52

daisy:251
daisy:197


Finally, security analyzers can be used to generate “badness metrics” [McGraw 04c], giving
management and analysts one extra piece of information about the overall quality of the software.
Security analyzers are not always perfect in this role either, however. Metrics experts warn against
situations where improving the measurements becomes an end in itself, since that practice decouples the
metrics from whatever was supposed to be measured in the first place. But the natural tendency is to do
just that with the output of a security analyzer: fix the vulnerabilities that the analyzer found. The
problem is that a security analyzer can find only some of the security bugs in a piece of software; what
percentage it finds is anyone’s guess. Once those bugs are removed, the analyzer will give the software a
clean bill of health even if 95% of the original problems are still there. Furthermore, if the security
analyzer generates many false alarms, then the work done to address issues it finds may not significantly
improve software security.

This point is worth remembering even when a security analyzer is being used to help a human analyst
work faster and not as a badness-ometer. No matter how many times an analyzer is run on a given piece
of source code, it will always report the same problems. Once those problems are fixed, there is nothing
left for the analyzer to say unless it is augmented to provide new types of detection ability (perhaps by
the addition of user-specifiable rules). In contrast, a human analyst can find new problems each time he
or she examines a piece of source code.

Intended Audience
This document, with its accompanying test programs, is meant for security analysts, and aims to provide
an overview of the capabilities of security analyzers. It is also intended to provide a means for evaluating
the detection ability of existing tools and their resistance to false alarms. The focus is not on
enumerating specific vulnerabilities—that would be impossible as well as potentially misleading—but
on categorizing important capabilities of security analyzers and providing the means to evaluate those
capabilities.

Scope
This document discusses security analysis tools for software source code. This excludes network-based
security analyzers and tools that analyze binary executables, as well as other black box security testing
tools. The focus of this document is on analyzers for C/C++ code, though future versions may include
analyzers for Java and .NET-based programming languages. We focus on tools that are usable in
commercial settings, but the accompanying spreadsheet also lists some academic tools that may or may
not be usable in large software development projects. Although it contains criteria for evaluating
security analyzers, this document does not include actual evaluations of any tools.

Capabilities of Security Analyzers

This section enumerates some important capabilities that security analyzers have or should have. As far
as possible, the section also describes the underlying technologies that provide these capabilities.

Examining Calls to Potentially Insecure Library Functions
The first security analyzers were open-source tools that searched for calls to insecure library functions.
Even today this is an important class of vulnerabilities not only because of its prevalence but because of
the ease with which hackers themselves can find such flaws.

In some cases it is desirable for a security analyzer to examine the arguments to library functions, since
many functions are dangerous only when they are called with certain types of arguments. Some simple
tests on function arguments can significantly reduce false alarms. This is especially desirable for certain

Source Code Analysis Tools - Overview 2
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52



39. In fact, many interesting static analysis problems are technically impossible due to undecidability, but it is not productive
to simply dismiss all attempts to solve such problems. One often finds that a large number of real-world instances of the
problem can be solved. When we call a static analysis problem “difficult” or “challenging,” we mean that one often seems
to encounter challenging instances of that problem in real source code.

vulnerabilities, such as format string vulnerabilities, that are normally avoided by choosing safe
arguments rather than by calling a different, non-vulnerable function.

This security-scanning capability can encompass several components:

• A database of vulnerable library calls is perhaps the heart of this security scanning technology, but
at the same time it is the hardest to evaluate. The vulnerability database must, above all things, be up
to date, but an evaluation suite would have to be constantly updated as well to remain relevant.

• The ability to preprocess source code is important for C/C++ analyzers, because it lets the analyzer
see the same code that will be seen by the compiler. Without this capability there are numerous ways
to deceive the analyzer. Many analyzers use heuristics to approximate the functionality of a
preprocesser.

• Lexical analysis is the process of breaking a program into tokens prior to parsing. Lexical analysis is
necessary to reliably distinguish variables from functions and to identify function arguments. These
functions can also be performed with heuristics—at the cost of some reliability, however.

Detecting Bounds-Checking Errors and Scalar Type Confusion
A number of vulnerabilities occur in cases where scalar assignments transparently change the value
being assigned. Examples of this are

• integer overflow: an integer variable overflows and becomes negative

• integer truncation: an integer value is truncated while being cast to a data type with fewer digits

• unsigned underflow: an unsigned integer value underflows and becomes large

When one of these issues results in a vulnerability, it is typically because the affected variable gives the
size of a buffer. Typically, such errors can be avoided by placing bounds checks in appropriate places in
the code and by type-checking scalars.

To perform robust type checking, an analyzer must be able to parse the code, and the parser must know
how to process data types. Typical shortcomings of systems that try to perform type checking with no
parser include the inability to distinguish between variables and user-defined types and the inability to
determine the types of complex expressions, such as the admittedly obscure C construct

(counter++, y/z),

whose type is the data type of the variable z.

Type checking by itself cannot prevent overflows or underflows. To find potential overflow and
underflow problems, an analyzer might keep track of the minimum and maximum values of a variable,
or else it might try to ensure that a variable is checked before being used (in a known context) as a buffer
length. Detecting potential underflows and overflows is an admittedly challenging problem.39

Detecting Type Confusion Among References or Pointers
Type confusion with pointers or references is a common source of bugs and can also result in
vulnerabilities unless the type confusion is detected at runtime. C and C++ do not automatically provide
such runtime protection.

Source Code Analysis Tools - Overview 3
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52



In some cases, static type checking can identify reference type confusion. A classic situation that is not
detected by existing static methods is a cast between incompatible types having a common superclass. If
the bad cast is not detected at runtime, it can break the abstraction represented by the data type in
question, allowing (for example) methods written for one data type to be applied to a different data type.
It is easy to conceive of vulnerabilities that can result from such a situation.

Detecting Memory Allocation Errors
Vulnerabilities involving heap corruption can arise if an attacker is able to overwrite information used to
maintain the heap. Usually some of this information is stored together with allocated chunks of memory,
e.g., the allocated chunks are stored in a linked list. If an attacker can overwrite one of the links, the
operating system can be fooled into writing an arbitrary pointer value to an arbitrary location when it
relinks the list after freeing the corrupted chunk. Normally, the heap-maintenance information is not
within the range of memory that a program writes to, but a number of circumstances can allow an
attacker to corrupt this information. For example:

• a buffer overflow in an allocated chunk of memory

• a double free, where a chunk of memory is freed twice. An attacker might be able to modify the
heap-maintenance information if another chunk of memory is allocated between the two frees and if
that chunk contains the heap information for the doubly freed chunk.

• a write to freed memory. The affected memory may have been reallocated in such a way that the
heap information lies within the range of the freed chunk, allowing attackers to corrupt it.

Memory corruption vulnerabilities can vary from one operating system to the next because the operating
systems use different techniques for heap maintenance.

Detecting Vulnerabilities that Involve Sequences of Operations (Control-Flow
Analysis)
It is well known that file accesses by a program can create vulnerabilities if done incorrectly. While
some vulnerabilities result from the use of inherently insecure functions like stat(), operations also have
to be carried out in the right order. For example, a C program that opens a file must first ensure that
certain special file descriptors are accounted for and then obtain a file handle to check certain properties
of the file before it can access the file contents.

A number of potential vulnerabilities can be introduced when a sequence of operations is carried out
incorrectly. For example, the mask governing permissions of newly created files must be set explicitly if
a new file may be created, and integer ranges may have to be checked before being used (see Section
2.2) without any modification taking place between the time of check and time of use.

To detect (potential) vulnerabilities associated with incorrectly implemented sequences of operations,
security analyzers often look for specific library function calls and print a warning about potential
security problems associated with those functions. For example, a call that opens a file might result in a
warning about opening files correctly. The problem with this approach is that a warning is triggered
regardless of whether the operation in question is being carried out correctly, which causes noise. Most
security analyzers support user annotations in the source code that can turn off such warnings. In fact,
some analyzers provide an expressive variety of annotations, giving the user some ability to prevent the
masking of one security risk by an annotation that was meant for a different risk. Nonetheless, this
approach seems slightly unsatisfactory, since the presence of an annotation in the code is not
intrinsically connected to the presence or absence of a vulnerability.

Control-flow and data-flow analysis are more robust ways of reducing false alarms. These techniques try
to determine whether apparent vulnerabilities can actually be exploited. They also make it possible to

Source Code Analysis Tools - Overview 4
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52



perform entirely new types of analysis.

For example, control-flow analysis can be used to when some potentially dangerous operation must be
preceded by precautionary measures, such as closing and reopening standard file descriptors in C before
writing to them, or setting default file permissions before creating a new file. Some potential
vulnerabilities can also be avoided if the program drops its privileges before carrying out dangerous
activities.

Data-Flow Analysis
Security analyzers use data-flow analysis primarily to reduce false positives and false negatives. As a
simple (but common) example, many buffer overflows in real code are unexploitable because the
attacker cannot control the data that overflows the buffer. Data-flow analysis, in this example, can be
helpful in distinguishing exploitable from unexploitable buffer overflows.

The data-flow analysis that seems to be used most often in security-related applications is taint analysis.
It defines an abstract property of variables called taint, which behaves very much like a data type. The
most obvious use of taint is to say that a variable is tainted if its value can be influenced by a potential
attacker. If a tainted variable is used to compute the value of a second variable, then the second variable
also becomes tainted, and so on.

It is also possible to define different types of taint. As a simple example, freeing a pointer could give it a
special freed pointer taint, and the security analyzer could detect potential double frees by checking
whether a pointer tainted in this way is freed again.

Taint analysis is static, similar to static type checking. This tends to make the tainting process overly
liberal in the sense that variables may become tainted when they technically should not be.

Pointer-Aliasing Analysis
Pointer aliasing occurs when two pointers point to the same data. The data that would be found by
dereferencing one of the pointers can change even though the source code contains no mention of that
pointer. This makes static code analysis a greater challenge. Pointer-aliasing analysis refers to any static
technique that tries to solve this problem by tracking which pointers point to what locations. This
analysis can be especially difficult because pointers themselves are just data, and many programming
languages allow them to be manipulated in arbitrary ways. For example, imagine a loop that increments
the value of a pointer until it points to a space character and then increments the pointer once more
(perhaps so it points to the word that comes after the space). Pointer analysis might have to statically
answer the question of whether this pointer now points to the tenth character in the string (perhaps
another pointer references that location). The problem can be quite difficult if the string is user supplied.
Fortunately, some useful pointer-aliasing analysis can still be done without solving difficult or
impossible problems.

It is possible to devise vulnerabilities based on pointer aliasing, but the main benefit of pointer-aliasing
analysis is that it facilitates data-flow analysis. It is a particularly difficult to solve statically aspect of
software analysis, and it is mentioned separately here for that reason.

Customizable Detection Capabilities
Aside from technologies that are meant to reduce false alarms, much of the power of newer security
analyzers comes from their ability to support customized detection rules. For example, users of the tool
may be able to perform customized data-flow analyses by specifying new types of taint and sources of
taint, together with specific rules for how that taint propagates. It may also be possible to specify certain
dynamic behaviors that should be checked statically. In short, the available technologies for data-flow

Source Code Analysis Tools - Overview 5
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52



69. #Capabilities-of-Security-Analyzers

and control-flow analysis allow users of a security analyzer to adapt it for site-specific security policies.

There are also general-purpose static code analysis tools that can be similarly customized, including
those that are not explicitly intended as security analyzers but can be used in this capacity by specifying
an appropriate set of rules. Because of time and space limitations, this document touches
general-purpose tools only in a superficial way. (Furthermore, one could argue that for these tools it is
the analyst, not the tool vendor, who provides security analysis capabilities in the first place.)

If customization is planned for a security analyzer, analysts should be aware that the specification and
debugging of detection rules can be somewhat time consuming, especially for those who are unfamiliar
with the tool. Aside from detection ability (and the ability to support customization in the first place), the
ease of customization should be given high priority when selecting a security analysis tool.

Overview of the Evaluation Programs

This evaluation suite focuses on analyzers for C/C++ software. It consists of small, simple C/C++
programs, each of which is meant to evaluate some specific aspect of a security analyzer’s performance.
Overall, the evaluation programs can be categorized as programs used to evaluate the detection of
potential vulnerabilities and those used to evaluate resilience against false alarms. Below the description
of each program is a table that lists the capabilities from Section Capabilities of Security Analyzers69

that the test program is relevant to.

Programs for Evaluating Detection Ability
• custom_ovf.c: Buffer overflow using a custom version of the strcpy() function. This buffer overflow

is not in the form of a call to a library function. Ability to detect this overflow suggests good
data-flow and control-flow analysis capabilities.

Calls to potentially
insecure library
functions

Buffer overflows #

Bounds-checking errors
and type confusion

Control-flow analysis #

Type confusion among
pointers

Data-flow analysis #

Memory allocation
errors

Pointer aliasing

• ex_02.c: Local attacker can cause file-descriptor aliasing. If this is a setuid program, the attacker
can exec() it after closing file descriptor 2. The next time the program opens a file, the file is
associated with file descriptor 2, which is stderr. All output directed to stderr will go to the newly
opened file. In this example, the attacker creates a symbolic link to the file that is to be overwritten.
The name of the link contains the data to be written. When the program detects the symbolic link, it
prints an error message and exits (line 32), but the error message, which contains the symbolic link
name supplied by the attacker, is written into the targeted file.

There are several ways to detect this vulnerability, most of which can be characterized as
control-flow analysis or data-flow analysis. However, it can also be detected by scanners that
vacuously print warning messages for all fprintf statements, which is generally not useful

Source Code Analysis Tools - Overview 6
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52

#Capabilities-of-Security-Analyzers


functionality due to false positives. Whether the scanner does this can be determined by running it on
ex_02_unex.c

Calls to potentially
insecure library
functions

Buffer overflows

Bounds-checking errors
and type confusion

Control-flow analysis #

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• ex_03.c: Race condition while opening a file. This is a simple race condition, allowing the attacker to
change the file named in argv[1] to a symbolic link after it is tested but before the file is opened.

Calls to potentially
insecure library
functions

# Buffer overflows

Bounds-checking errors
and type confusion

Control-flow analysis #

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• except.c: Format-string vulnerability in an error handler. The catch block in this program contains
an exploitable format-string vulnerability. The idea of this test is to see whether the analyzer can
track taint through the exception handler. Ideally, the analyzer should report a format string
vulnerability on line 32 but not report the unexploitable format string vulnerability in the
complementary program unexcept.c below.

The ability to detect this vulnerability suggests that the analyzer can trace control and data flow
through the C++ exception-handling mechanism. However, it can also be detected by printing a
warning for all fprintf statements, which is often not useful. Whether the scanner does this can be
determined by running it on ex_02_unex.c.

Calls to potentially
insecure library
functions

# Buffer overflows

Bounds-checking errors
and type confusion

Control-flow analysis #

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• filedesc.c: Local attacker can cause file-descriptor aliasing. If this is a setuid program, the attacker

Source Code Analysis Tools - Overview 7
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52



can exec() it after closing file descriptor 2. The next time the program opens a file, the file is
associated with file descriptor 2, which is stderr. All output directed to stderr will go to the newly
opened file. In this example, the attacker creates a symbolic link to the file that is to be overwritten.
The name of the link contains the data to be written. When the program detects the symbolic link, it
prints an error message and exits, but the error message, which contains the symbolic link name
supplied by the attacker, is written into the targeted file. This isn’t much different from ex_02.c, but
the latter program was found on the web claiming to be a secure way of opening files. This program
is somewhat simpler and, for some analyzers, might make it easier to tell what the analyzer is
printing warnings about.

Calls to potentially
insecure library
functions

# Buffer overflows

Bounds-checking errors
and type confusion

Control-flow analysis #

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• macros.c: A program to test whether a analyzer preprocesses code.

A scanner that does not detect the vulnerability, or one that claims a vulnerability is in the second
#define rather than in the call to FASTSTRCPY(), probably does not understand C macros.

Calls to potentially
insecure library
functions

# Buffer overflows #

Bounds-checking errors
and type confusion

Control-flow analysis

Type confusion among
pointers

Data-flow analysis

Memory Allocation
Errors

Pointer aliasing

• overflow.c: Vulnerability caused by an integer overflow. In this program, an attacker can supply a
large buffer length, which overflows to zero on line 14. Since the subsequent read on line 15 uses the
original length value, the read can overflow the buffer.

Many analyzers will flag the read no matter what, which is useful but doesn’t reflect what this
program is trying to test. The complementary program notoverflow.c (below) is meant to check
whether an analyzer is actually detecting the possible overflow.

Calls to potentially
insecure library
functions

# Buffer overflows #

Bounds-checking errors
and type confusion

# Control-flow analysis

Type confusion among Data-flow analysis

Source Code Analysis Tools - Overview 8
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52



pointers

Memory Allocation
Errors

Pointer aliasing

• signedness.c: Negative integer turns into large positive string size during cast. From
Secure-Programs-HOWTO/dangers-c.html. In this example, the attacker-controlled number len is
read as an integer, and even though there is a test to check whether it’s greater than the length of the
buffer, a negative value for len will be converted to a large positive value when it gets cast to an
unsigned integer in the second call to read.

An analyzer that does not see this vulnerability probably does not understand data types.

Calls to potentially
insecure library
functions

# Buffer overflows #

Bounds-checking errors
and type confusion

# Control-flow analysis

Type confusion among
pointers

Data-flow analysis

Memory Allocation
Errors

Pointer aliasing

• simplefopen.c: File is opened with no checks at all and can be spoofed by an attacker. (Often this
would be called a race condition as well, but technically it isn’t, since the necessary checks are
missing entirely.) Early analyzers would be expected to generate warnings on this file because of the
fopen(). This test is meant for analyzers that don’t warn about anything in ex2_unex.c; it checks
whether they just ignore open() calls altogether (ignoring open() isn’t what ex2_unex is testing for,
needless to say).

Calls to potentially
insecure library
functions

# Buffer overflows

Bounds-checking errors
and type confusion

Control-flow analysis #

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• strmacro.c: This file tries to fool the analyzer by making “strcpy” look like a variable instead of a
function.

A scanner that fails to find this vulnerability or says the vulnerability is in the #define probably does
not preprocess C macros.

Calls to potentially
insecure library
functions

# Buffer overflows #

Bounds-checking errors Control-flow analysis

Source Code Analysis Tools - Overview 9
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52



and type confusion

Type confusion among
pointers

Data-flow analysis

Memory Allocation
Errors

Pointer aliasing

• strncat_loop2.c: Buffer overflow caused by a series of strncat()s.

This program tests the analyzer’s ability to perform data- and control-flow analysis, but an analyzer
that vacuously warns of all strncat calls will also create false alarms in strncat.c.

Calls to potentially
insecure library
functions

# Buffer overflows #

Bounds-checking errors
and type confusion

Control-flow analysis #

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• strncat_loop.c: A series of strncat()s within a loop leads to a buffer overflow. Technically the buffer
in this program has enough room for all the strncat()s, but the programmer forgot to terminate the
buffer before the strncat()s begin. Therefore line 7 contains a potential buffer overflow.

The ability to detect this vulnerability indicates that the analyzer knows something about data on the
heap, though the vulnerability could also be detected kludgingly by a rote rule requiring an
initialization after a malloc. Once again, the analyzer should not also create false alarms for strncat.c.

Calls to potentially
insecure library
functions

# Buffer overflows #

Bounds-checking errors
and type confusion

Control-flow analysis #

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• strncat_ovf.c: A strncat() into an unterminated string causes a buffer overflow. strncpy() doesn’t
automatically null-terminate the string being copied into. In this example, the attacker supplies an
argv[1] of length ten or more. In the subsequent strncat(), data is copied not to buffer[10] as the code
suggests but to the first location to the left of buffer[0] that happens to contain a zero byte.

This program is intended to determine whether an analyzer can keep track of the contents of buffers.
As above, the analyzer should not vacuously warn of all strncat calls, as indicated by strncat.c.

Calls to potentially
insecure library
functions

# Buffer overflows #

Source Code Analysis Tools - Overview 10
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52



Bounds-checking errors
and type confusion

Control-flow analysis #

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• strncat_ovf2.c: Another strncat into an unterminated buffer.

Calls to potentially
insecure library
functions

# Buffer overflows #

Bounds-checking errors
and type confusion

Control-flow analysis #

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• strncpy1.c: Attacker controls argument 2 of strcpy().

Calls to potentially
insecure library
functions

# Buffer overflows #

Bounds-checking errors
and type confusion

Control-flow analysis

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• truncated.c: Short buffer allocated because of type mismatch. This program contains an integer
truncation error. Superficially it looks like a safe program even though the buffer length is tainted. It
seems as though the buffer is large enough to accommodate whatever data ends up being placed
there by the program’s read statement. However, the program has a customized malloc() function
that takes an int argument, so in reality the malloc on line 3 doesn’t always see the same argument as
the read on line 18. A value of len larger than 2*MAXINT allows a buffer overflow on line 18.

This example is somewhat contrived because of the large amount of memory that would have to be
allocated for an exploit to succeed. On many architectures, len cannot be greater than 2*MAXINT.

Checks whether an analyzer understands types.

Calls to potentially
insecure library
functions

# Buffer overflows #

Bounds-checking errors
and type confusion

# Control-flow analysis

Source Code Analysis Tools - Overview 11
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52



Type confusion among
pointers

Data-flow analysis

Memory Allocation
Errors

Pointer aliasing

• umaskopen.c: File opened without setting umask. umask() controls the permissions created by the
open call, but the permission mask is passed to the child process in an exec(). If this is a setuid
program, the attacker can set a permission mask that makes these files world-writable, but the new
file may be a system-critical one. In this program, the programmer uses the umask that existed when
the program was exec()ed, but that umask might be controlled by an attacker.

Calls to potentially
insecure library
functions

Buffer overflows

Bounds-checking errors
and type confusion

Control-flow analysis #

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• umaskopen2.c: umask() call used incorrectly. Based on the incorrect statement “umask sets the
umask to mask & 0777” in the umask man page. In reality umask sets the mask to 0777 & ~mask,
which is also contrary to the convention for chmod that most people are accustomed to. (However,
the correct usage is given lower down on the umask man page.) Below, the programmer uses
umask() to give the rest of the world full access to the newly created file while denying access to him
or herself, which can safely be assumed to be a programming error.

Calls to potentially
insecure library
functions

# Buffer overflows

Bounds-checking errors
and type confusion

Control-flow analysis

Type confusion among
pointers

Data-flow analysis

Memory Allocation
Errors

Pointer aliasing

• vptr1.cxx: Buffer overflow caused by a bad cast. The principle here is that incorrectly casting a
pointer to a C++ object potentially breaks the abstraction represented by that object, since the
(non-virtual) methods called on that object are determined at compile time, while the actual type of
the object might not be known until runtime. In this example, a seemingly safe strncpy causes a
buffer overflow. (In gcc the buffer overflows into the object itself and then onto the stack for this
particular program. With some compilers the overflow might modify the object’s virtual table.)

Calls to potentially
insecure library
functions

# Buffer overflows #

Source Code Analysis Tools - Overview 12
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52



Bounds-checking errors
and type confusion

Control-flow analysis

Type confusion among
pointers

# Data-flow analysis

Memory Allocation
Errors

Pointer aliasing

Programs for Evaluating Resiliency Against False Alarms
• alias.c: A test for pointer aliasing analysis. Since that capability is generally useful only if the

analyzer provides some data-flow analysis capabilities, data-flow analysis is needed too. The
variable that determines the size of a string copy is untainted, but aliasing analysis is needed to
determine this.

Calls to potentially
insecure library
functions

Buffer overflows

Bounds-checking errors
and type confusion

Control-flow analysis

Type confusion among
pointers

Data-flow analysis

Memory Allocation
Errors

Pointer aliasing #

• const_str1.c: Unexploitable overflow via constant string passed directly to strcpy(). This program
contains a buffer overflow, but the overflowing data isn’t controlled by the attacker. Ideally, an
analyzer should either not report a buffer overflow associated with this strcpy or at most report a
problem with lower severity than a strcpy whose argument is attacker controlled.

Calls to potentially
insecure library
functions

# Buffer overflows

Bounds-checking errors
and type confusion

Control-flow analysis

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• const_str2.c: Unexploitable overflow by constant string passed indirectly to strcpy(). This program
contains a buffer overflow, but the overflowing data isn’t controlled by the attacker. Ideally, an
analyzer should either not report a buffer overflow associated with this strcpy() or at most report a
problem with lower severity than a strcpy() whose argument is attacker controlled.

The program is similar to const_str1.c, but it presents a slightly harder problem for the analyzer. In
const_str1.c, an analyzer could notice that the argument to strcpy is a constant string by looking for
the quote symbol that follows the open parenthesis after the name of the function. In this program,

Source Code Analysis Tools - Overview 13
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52



some sort of data-flow analysis is needed (taint checking should be enough).

Calls to potentially
insecure library
functions

# Buffer overflows

Bounds-checking errors
and type confusion

Control-flow analysis

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• const_str3.c: Unexploitable overflow by a constant string stored in a variable. This is another buffer
overflow using a non-user-defined string. Here, the constant string is placed into a variable rather
than being passed as a function argument as in const_str2.c. However, taint analysis should still be
enough to let the analyzer recognize that the overflowing string is not user controlled.

Calls to potentially
insecure library
functions

# Buffer overflows

Bounds-checking errors
and type confusion

Control-flow analysis

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• ex_02_unex.c: (Believed) safe file open. This program ensures that stdin, stdout, and stderr are
accounted for and then opens a file, ensuring that access checks are performed on the actual object
being opened. The program doesn’t set the umask, but that isn’t necessary because the umask only
affects the permissions of newly created files, and in this program open is called without the
O_CREAT flag and therefore will only open a pre-existing file.

Calls to potentially
insecure library
functions

# Buffer overflows

Bounds-checking errors
and type confusion

Control-flow analysis #

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• fixedbuff1.c: Variable-sized buffer that syntactically resembles a fixed-sized buffer. Many security
analyzers generate a warning when they see a fixed-sized buffer. This test program declares a
variable-sized buffer based on the length of the string that’s going to be copied into it, but it uses a
syntax more commonly associated with fixed-sized buffers. It is meant to determine whether an

Source Code Analysis Tools - Overview 14
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52



analyzer detects fixed-sized buffers by looking for square brackets after the variable name or
whether it actually parses the declaration.

Calls to potentially
insecure library
functions

# Buffer overflows

Bounds-checking errors
and type confusion

Control-flow analysis #

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• fixedbuff2.c: Variable-sized buffer, syntactically like fixed-sized buffer, whose length is based on a
parameter. This is another variant of a variable-sized buffer being made to syntactically resemble a
fixed-sized buffer. It has the added twist that the buffer might be too small if the function useString
is called incorrectly, in spite of which there is no buffer overflow here because useString is called
correctly (and is inaccessible from other source files).

Calls to potentially
insecure library
functions

# Buffer overflows

Bounds-checking errors
and type confusion

Control-flow analysis #

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• fixednamefopen.c: Believed unexploitable file open, filename with constant path. This program
opens a file with a fixed name in a directory that shouldn’t normally be accessible to an attacker. If,
for some reason, the attacker has gained write access to /etc, this program could be used to overwrite
files in other places, but the vulnerability is less serious than it would be if it opened a file in a
directory that’s normally writable.

Calls to potentially
insecure library
functions

# Buffer overflows

Bounds-checking errors
and type confusion

Control-flow analysis

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• intarray.c: Analyzer must resolve typedef to determine the data type of an array.

Source Code Analysis Tools - Overview 15
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52



Calls to potentially
insecure library
functions

# Buffer overflows

Bounds-checking errors
and type confusion

Control-flow analysis

Type confusion among
pointers

Data-flow analysis

Memory Allocation
Errors

Pointer aliasing

• notoverflow.c: Potential integer overflow is averted by a bounds check. This program does not
contain an integer overflow on line 15 because the length of the variable len is checked. It’s meant to
complement overflow.c, to check whether buffer overflow warnings for that program are just
vacuously triggered by the read() call or if the analyzer is actually spotting the overflow.

Calls to potentially
insecure library
functions

# Buffer overflows

Bounds-checking errors
and type confusion

# Control-flow analysis

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• nottruncated.c: Bounds check averts a potential truncation error. This program complements
truncated.c, which is taken from the Linux secure programming HOWTO. It avoids the integer
truncation problem of truncated.c, and it’s meant to test whether an analyzer that reports a buffer
overflow for truncated.c is doing so vacuously or whether it actually noticed the possible integer
truncation.

In this program, the developer has defined a custom version of the malloc function that takes an int
argument and thereby creates the possibility of an integer truncation vulnerability, but bounds
checking prevents the malloc from seeing a different length value than the original read.

This program differs from nottruncated2.c because both mymalloc and read take the original
user-controlled size_t len as an argument, but those calls are unreachable for values of len that would
cause truncation problems.

Calls to potentially
insecure library
functions

# Buffer overflows

Bounds-checking errors
and type confusion

# Control-flow analysis

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

Source Code Analysis Tools - Overview 16
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52



• nottruncated2.c: Almost a truncation error, but not quite. This program complements truncated.c,
which is taken from the Linux secure programming HOWTO. It avoids the integer truncation
problem of truncated.c, and it’s meant to test whether an analyzer that reports a buffer overflow for
truncated.c is doing so vacuously or whether it actually noticed the possible integer truncation.

In this file, we read a tainted integer and use it to determine the size of a subsequent read of a tainted
string. But the buffer receiving the data during the second read is allocated according to
user-provided length, and read will only put that many bytes in the buffer, so there should be no
overflow.

Calls to potentially
insecure library
functions

# Buffer overflows

Bounds-checking errors
and type confusion

# Control-flow analysis

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• signOK.c: Bounds check prevents a sign error. This program complements signedness_1.c, where an
attacker can create a buffer overflow by specifying a negative number for a buffer length. It checks
whether warnings in signedness_1.c are generated vacuously.

Calls to potentially
insecure library
functions

# Buffer overflows

Bounds-checking errors
and type confusion

# Control-flow analysis

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• strncat.c: Safe usage of strncpy() and strncat(). This program uses strncpy() and strncat() safely,
without introducing a buffer overflow. It is intended to check whether an analyzer warns vacuously
about strncpy() and strncat() or actually checks that the buffer sizes are okay and whether the buffer
is terminated after the strncpy().

Calls to potentially
insecure library
functions

# Buffer overflows

Bounds-checking errors
and type confusion

Control-flow analysis

Type confusion among
pointers

Data-flow analysis

Memory Allocation Pointer aliasing

Source Code Analysis Tools - Overview 17
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52



Errors

• strsave.c: Safe use of strcpy(). This use of strcpy() ensures that the buffer is large enough to
accommodate the string being copied. The data-flow analysis needed to verify this may be too
complex to be accomplished with simple taint checking.

Calls to potentially
insecure library
functions

# Buffer overflows

Bounds-checking errors
and type confusion

Control-flow analysis #

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• strsave2.c: Safe use of strcpy(), with the library call enclosed in a wrapper function. This use of
strcpy() ensures that the buffer is large enough to accommodate the string being copied. The
data-flow analysis needed to determine whether the strcpy() is safe is somewhat more complex than
in strsave.c.

Calls to potentially
insecure library
functions

# Buffer overflows

Bounds-checking errors
and type confusion

Control-flow analysis #

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

• unexcept.c: Format-string vulnerability in an exception handler is unexploitable because of the way
that the handler is invoked. The catch block in this program contains an unexploitable format-string
vulnerability. The idea of this test is to see whether the analyzer can track taint through the
exception-handling mechanism.

Calls to potentially
insecure library
functions

# Buffer overflows

Bounds-checking errors
and type confusion

Control-flow analysis #

Type confusion among
pointers

Data-flow analysis #

Memory Allocation
Errors

Pointer aliasing

Source Code Analysis Tools - Overview 18
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52



159. http://www.ida.liu.se/%7Ejohwi/research_publications/paper_ndss2003_john_wilander.pdf

160. https://dspace.mit.edu/handle/1721.1/18025

161. http://www.cs.umd.edu/%7Epugh/BugWorkshop05/papers/61-zhivich.pdf

162. http://www.cs.umd.edu/%7Epugh/BugWorkshop05

163. http://www.cs.umd.edu/%7Epugh/BugWorkshop05/papers/62-kratkiewicz.pdf

164. http://www.cs.umd.edu/%7Epugh/BugWorkshop05

165. http://www.cs.umd.edu/%7Epugh/BugWorkshop05

168. http://www.cs.berkeley.edu/%7Edaw/boon/

169. http://sourceforge.net/projects/bugscam

Other Evaluations of Static Security Analyzers
John Wilander and Mariam Kamkar, “A Comparison of Publicly Available Tools for Static Buffer
Overflow Prevention159,” Proceedings of the 7th Nordic Workshop on Secure IT Systems, 2002.

Misha Zitser, Securing Software: An Evaluation of Static Source Code Analyzers160, Master’s Thesis,
Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 2003.

M. Zitser, R Lippmann, and T. Leek, “Testing Static Analysis Tools using Exploitable Buffer Overflows
from Open Source Code,” SIGSOFT Software Engineering Notes 29, 6 (2004): 97-106.

Michael Zhivich, Tim Leek, and Richard Lippmann, “Dynamic Buffer Overflow Detection161,”
Workshop on the Evaluation of Software Defect Detection Tools162, 2005.

Kendra Kratkiewicz and Richard Lippmann, “Using a Diagnostic Corpus of C Programs to Evaluate
Buffer Overflow Detection by Static Analysis Tools163,” Workshop on the Evaluation of Software Defect
Detection Tools164, 2005.

Kendra Kratkiewicz, Evaluating Static Analysis Tools for Detecting Buffer Overflows in C Code,
Master’s Thesis, Harvard University, 2005.

The 2005 Workshop on the Evaluation of Software Defect Detection Tools165 contains a number of
papers that may be of interest for evaluating security analyzers, though the workshop itself is broader in
scope.

A List of Commercial and Academic Static Security Analyzers

The following list of static security analyzers is incomplete, especially in view of the fact that new tools
will undoubtedly appear after the time of this document’s writing. However, we have attempted to
provide as complete a list as possible of currently available tools. We do not include security analyzers
that are unavailable to the general public even though they may be described on the web or in academic
papers.

Name Type Description

BOON168
academic A model checker that targets

buffer-overflow vulnerabilities in
C code.

Bugscam169
open source Checks for potentially dangerous

function calls in binary

Source Code Analysis Tools - Overview 19
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52

https://dspace.mit.edu/handle/1721.1/18025
http://www.cs.umd.edu/%7Epugh/BugWorkshop05
http://www.cs.umd.edu/%7Epugh/BugWorkshop05
http://www.cs.umd.edu/%7Epugh/BugWorkshop05
http://www.cs.umd.edu/%7Epugh/BugWorkshop05
http://www.cs.berkeley.edu/%7Edaw/boon/
http://sourceforge.net/projects/bugscam


170. http://www.securesoftware.com/products/

171. http://www.grammatech.com/products/codesonar/overview.html

172. http://www.owasp.org/software/labs/codespy.html

173. http://www.coverity.com/products/prevent.html

174. http://www.cs.umd.edu/%7Ejfoster/cqual/

175. http://www.compuware.com/products/devpartner/securitychecker.htm

176. http://www.dwheeler.com/flawfinder

177. http://www.fortifysoftware.com

178. http://www.klocwork.com/products/inforce.asp

179. http://www.cigital.com/its4/

180. http://www.cs.berkeley.edu/%7Edaw/mops/

181. http://www.ouncelabs.com/prexis_engine.html

executable code.

CodeAssure170
commercial General-purpose security

scanners for many programming
languages.

CodeSonar171 commercial Checks for vulnerabilities and
other defects in C and C++.

CodeSpy172
open source Security scanner for Java.

Coverity Prevent173
commercial C/C++ bug checker and security

scanner.

Cqual174
academic C Data-flow analyzer using

type/taint analysis. Requires
some program annotations.

DevPartner SecurityChecker175 commercial Security scanner for C# and
Visual Basic

flawfinder176
open source Security scanner for C code.

Fortify Tools177
commercial General-purpose security scanner

for C, C++, and Java.

inForce178
commercial Checks for vulnerabilities and

other defects in C, C++, and
Java.

its4179
freeware Checks for potentially dangerous

function calls in C code.

MOPS180
academic Checks for vulnerabilities

involving sequences of function
calls in C code.

Prexis Engine181
commercial Security scanner for C/C++ and

Java/JSP.

Pscan182
open source Checks for potentially dangerous

Source Code Analysis Tools - Overview 20
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52

http://www.securesoftware.com/products/
http://www.grammatech.com/products/codesonar/overview.html
http://www.owasp.org/software/labs/codespy.html
http://www.coverity.com/products/prevent.html
http://www.cs.umd.edu/%7Ejfoster/cqual/
http://www.compuware.com/products/devpartner/securitychecker.htm
http://www.dwheeler.com/flawfinder
http://www.fortifysoftware.com
http://www.klocwork.com/products/inforce.asp
http://www.cigital.com/its4/
http://www.cs.berkeley.edu/%7Edaw/mops/
http://www.ouncelabs.com/prexis_engine.html
http://www.striker.ottawa.on.ca/%7Ealand/pscan/


182. http://www.striker.ottawa.on.ca/%7Ealand/pscan/

183. http://www.securesoftware.com/resources/tools.html

184. http://smatch.sourceforge.net/

185. http://splint.org/

function calls in C code.

RATS183
open source Checks for potentially dangerous

function calls in C code.

smatch184
open source C/C++ bug checker and security

scanner.

splint185
open source Checks C code for potential

vulnerabilities and other
dangerous programming
practices.

Glossary

access control Access control ensures that resources are only
granted to those users who are entitled to them.
[SANS 03]

account harvesting The process of collecting all the legitimate account
names on a system. [SANS 03]

attack The act of trying to bypass security controls on a
system. An attack may be active, resulting in the
alteration of data; or passive, resulting in the
release of data. Note: The fact that an attack is
made does not necessarily mean that it will
succeed. The degree of success depends on the
vulnerability of the system or activity and the
effectiveness of existing countermeasures.
[NCSC-TG-004-88]

auditing The information gathering and analysis of assets to
ensure such things as policy compliance and
security from vulnerabilities. [SANS 03]

authorization The approval, permission, or empowerment for
someone or something to do something. [SANS
03]

backdoor A tool installed after a compromise to give an
attacker easier access to the compromised system
around any security mechanisms that are in place.
[SANS 03]

brute force A cryptanalysis technique or other kind of attack
method involving an exhaustive procedure that
tries all possibilities, one by one. [SANS 03]

Source Code Analysis Tools - Overview 21
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52

http://www.securesoftware.com/resources/tools.html
http://smatch.sourceforge.net/
http://splint.org/


buffer overflow An exploitation technique that alters the flow of an
application by overwriting parts of memory.
Buffer overflows are a common cause of
malfunctioning software. If the data written into a
buffer exceeds its size, adjacent memory space
will be corrupted and normally produce a fault. An
attacker may be able to utilize a buffer overflow
situation to alter an application’s process flow.
Overfilling the buffer and rewriting memory-stack
pointers could be used to execute arbitrary
operating-system commands. [WebAppSec]

control-flow analysis Any one of several techniques used to statically
trace and characterize the flow of control in
software source code.

corruption A threat action that undesirably alters system
operation by adversely modifying system
functions or data. [SANS 03]

data-flow analysis Any one of several techniques used to statically
trace and characterize the flow of data in software
source code.

defense in depth The approach of using multiple layers of security
to guard against failure of a single security
component. [SANS 03]

denial of service The prevention of authorized access to a system
resource or the delaying of system operations and
functions. [SANS 03]

Dynamic Link Library (DLL) A collection of small programs, any of which can
be called when needed by a larger program that is
running in the computer. The small program that
lets the larger program communicate with a
specific device such as a printer or scanner is often
packaged as a DLL program (usually referred to as
a DLL file). [SANS 03]

file descriptor spoofing An attack where one or more of the three standard
C file descriptors, stdin, stdout, or stderr, are
closed before executing an application. The next
file opened by the application will be assigned one
of the standard file descriptors, and output sent to
that standard file descriptor will also go to the
newly opened file.

format string attack An exploit technique that alters the flow of an
application by using string formatting library
features to access other memory space.
[WebAppSec]

kernel The essential center of a computer operating
system, the core that provides basic services for all
other parts of the operating system. A synonym is
nucleus. A kernel can be contrasted with a shell,

Source Code Analysis Tools - Overview 22
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52



the outermost part of an operating system that
interacts with user commands. Kernel and shell are
terms used more frequently in UNIX and some
other operating systems than in IBM mainframe
systems. [SANS 03]

race condition A race condition exploits the small window of
time between a security control being applied and
the service being used. [SANS 03]

root The name of the administrator account in UNIX
systems. [SANS 03]

security policy A set of rules and practices that specify or regulate
how a system or organization provides security
services to protect sensitive and critical system
resources. [SANS 03]

sensitive information Sensitive information, as defined by the federal
government, is any unclassified information that, if
compromised, could adversely affect the national
interest or conduct of federal initiatives. [SANS
03]

shell A UNIX term for the interactive user interface
with an operating system. The shell is the layer of
programming that understands and executes the
commands a user enters. In some systems, the
shell is called a command interpreter. A shell
usually implies an interface with a command
syntax (think of the DOS operating system and its
“C:>” prompts and user commands such as “dir”
and “edit”). [SANS 03]

stack mashing Stack mashing is the technique of using a buffer
overflow to trick a computer into executing
arbitrary code. [SANS 03]

symbolic links Special files that point at another file. [SANS 03]

tamper To deliberately alter a system’s logic, data, or
control information to cause the system to perform
unauthorized functions or services. [SANS 03]

vulnerability A flaw or weakness in a system’s design,
implementation, or operation and management that
could be exploited to violate the system’s security
policy. [SANS 03]

References for the Glossary

[NCSC-TG-004-88] http://www.radium.ncsc.mil/tpep/library/rainbow/NCSC-TG-004.pdf

[SANS 03] The SANS Institute. SANS Glossary of Terms
Used in Security and Intrusion Detection.

Source Code Analysis Tools - Overview 23
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52



190. http://www.phrack.org/phrack/49/P49-14

http://www.sans.org/resources/glossary.php
(2003).

[WebAppSec] http://www.weppsec.org/projects/glossary

General References

[Aleph 96] Aleph One. “Smashing the Stack for Fun and
Profit190.” Phrack Magazine 7, 49 (1996): File 14
of 16.

[Anderson 96] Anderson, Robert H. & Hearn, Anthony C. An
Exploration of Cyberspace Security R&D
Investment Strategies for DARPA: The Day After...
in Cyberspace II. Rand Corporation.
MR-797-DARPA, 1996.

[Anderson 01] Anderson, Ross. Security Engineering. New York,
NY: John Wiley & Sons, 2001.

[AUSCERT 96] AusCERT. A Lab Engineer’s Check List for
Writing Secure Unix Code. Australian Computer
Emergency Response Team, 1996.

[Bellovin 94] Bellovin, Steven M. Shifting the Odds--Writing
(More) Secure Software. Murray Hill, NJ: AT&T
Research, 1994.

[Boehm 81] Boehm, Barry W. Software Engineering
Economics. Englewood Cliffs, NJ: Prentice-Hall,
1981.

[Boehm 87] Boehm, Barry W. “Improving Software
Productivity.” Computer 20, 9 (September 1987):
43-57.

[Boehm 88a] Boehm, Barry W. “A Spiral Model of Software
Development and Enhancement.” Computer 21, 5
(May 1988): 61-72.

[Boehm 88b] Boehm, Barry W. & Papaccio, Philip N.
“Understanding and Controlling Software Costs.
IEEE Transactions on Software Engineering 14,
10 (October 1988): 1462-1477.

[Bishop 02] Bishop, Matt. Computer Security: Art and Science.
Boston, MA: Addison-Wesley Professional, 2002.

[CERT 96] CERT/CC. CERT Survivability Project Report.
CERT Coordination Center, 1996.

[Chess 04] Chess, Brian & McGraw, Gary. “Static Analysis
for Security.” IEEE Security and Privacy 2, 6
(December 2004): 76-79.

Source Code Analysis Tools - Overview 24
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52

http://www.phrack.org/phrack/49/P49-14
http://www.phrack.org/phrack/49/P49-14


191. http://csrc.nist.gov/nissc/1998/papers.html

[Clements 02] Clements, Paul; Bachmann, Felix; Bass, Len;
Garlan, David; Ivers, James; Little, Reed; Nord,
Robert; & Stafford, Judith. Documenting Software
Architectures: Views and Beyond. Boston, MA:
Addison-Wesley, 2002.

[Cowan 98] Cowan, Crispin; Beattie, Steve; Finnin Day, Ryab;
Pu, Calton; Wagle, Perry; & Walthinsen, Erik.
“Protecting Systems from Stack Smashing Attacks
with StackGuard,” 119-129. Proceedings of the
1998 Usenix Security Conference, 1998.

[Cowan 99] Cowan, Crispin; Wagle, Perry; Pu, Calton; Beattie,
Steve; & Walpole, Jonathan. “Buffer Overflows:
Attacks and Defenses for the Vulnerability of the
Decade.” Proceedings of DARPA Information
Survivability Conference and Expo (DISCEX),
1999.

[Demarco 03] Demarco, Tom & Lister, Timothy. Waltzing With
Bears: Managing Risk on Software Projects. New
York, NY: Dorset House Publishing Company,
2003.

[Du 98] Du, Wenliang. “Categorization of Software Errors
That Led to Security Breaches191.” Proceedings of
the 21st National Information Systems Security
Conference. Crystal City, Virginia, Oct. 6-9, 1998.

[Fenton 96] Fenton, Noramn E.. & Pfleeger, Shari Lawrence.
Software Metrics: A Rigorous and Practical
Approach, 2nd ed. New York, NY: International
Thomson Computer Press, 1996.

[Garfinkel 03] Garfinkel, Simson; Spafford, Gene; & Schwartz,
Alan. Practical Unix & Internet Security, 3rd ed.
Sebastopol, CA: O’Reilly & Associates, Inc.,
2003.

[Gilb 98] Gilb, Tom. Principles of Software Engineering.
Workingham, England: Addison-Wesley, 1988.

[Ghosh 98] Ghosh, Anup K.; O’Connor, Tom; & McGraw,
Gary. “An Automated Approach for Identifying
Potential Vulnerabilities in Software,” 104-114.
Proceedings of the 1998 IEEE Symposium on
Security and Privacy. Oakland, California, May
3-6, 1998. Los Alamitos, CA: IEEE Computer
Society Press, 1998.

[Gong 99] Gong, Li. Inside Java 2 Platform Security.
Reading, MA: Addison Wesley, 1999.

[Graff 03] Graff, Mark G. & Van Wyk, Kenneth R. Secure

Source Code Analysis Tools - Overview 25
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52

http://csrc.nist.gov/nissc/1998/papers.html
http://csrc.nist.gov/nissc/1998/papers.html


Coding: Principles and Practices. Sebastopol, CA:
O’Reilly, 2003.

[Hoglund 04] Hoglund, Greg & McGraw, Gary. Exploiting
Software : How to Break Code. Boston, MA:
Addison-Wesley, 2004.

[Howard 00] Howard, Michael. Designing Secure Web-Based
Applications for Microsoft Windows 2000.
Redmond, WA: Microsoft Press, 2000.

[Howard 02] Howard, Michael & LeBlanc, David C. Writing
Secure Code, 2nd ed. Redmond, WA: Microsoft
Press, 2002.

[Jones 91] Jones, Capers. Applied Software Measurement:
Assuring Productivity and Quality. New York,
NY: McGraw-Hill, 1991.

[Jones 94] Jones, Capers. Assessment and Control of
Software Risks. Englewood Cliffs, NJ: Yourdon
Press, 1994.

[Jones 86] Jones, Capers. Programming Productivity. New
York, NY: McGraw-Hill, 1986.

[Kitson 87] Kitson, David H. & Masters, Stephen. “An
Analysis of SEI Software Process Assessment
Results, 1987-1991,” 68-77. Proceedings of the
Fifteenth International Conference on Software
Engineering. Baltimore, Maryland. May 17-21,
1993. Washington, DC: IEEE Computer Society
Press, 1993.

[Kuperman 99] Kuperman, Benjamin A. & Spafford, Eugene.
Generation of Application Level Audit Data via
Library Interposition. CERIAS Tech Report
TR-99-11, 1999.

[Maguire 93] Maguire, Steve. Writing Solid Code: Microsoft’s
Techniques for Developing Bug-Free C Programs.
Redmond, WA: Microsoft Press, 1993.

[McConnell 93] McConnell, Steve. Code Complete: A Practical
Handbook of Software Construction. Redmond,
WA: Microsoft Press, 1993.

[McGraw 99] McGraw, Gary, & Felten, Edward W. Securing
Java: Getting Down to Business with Mobile
Code, 2nd ed. New York, NY: John Wiley &
Sons, 1999.

[McGraw 02] McGraw, Gary. “Managing Software Security
Risks.” Computer 35, 4 (March 2002): 99-101.

[McGraw 03] McGraw, Gary. “From the Ground Up: The
DIMACS Software Security Workshop.” IEEE
Security and Privacy 1, 2 (March-April 2003):

Source Code Analysis Tools - Overview 26
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52



192. http://www.networkmagazine.com/showArticle.jhtml?articleID=49901410

193. http://java.sun.com/security/seccodeguide.html

59-66.

[McGraw 04a] McGraw, Gary & Potter, Bruce. “Software
Security Testing.” IEEE Security and Privacy 2, 5
(September-October 2004): 81-85.

[McGraw 04b] McGraw, Gary. “Software Security.” IEEE
Security and Privacy 2, 2 (March-April 2004):
80-83.

[McGraw 04c] McGraw, Gary. “Application Security Testing
Tools: Worth the Money?192” Network Magazine,
November 1, 2004.

[Miller 90] Miller, Barton P. “An Empirical Study of the
Reliability of UNIX Utilities.” Communications of
the ACM 33, 12 (1990).

[NCSA 97] National Center for Supercomputing Applications.
NCSA Secure Programming Guidelines, 1997.

[Peikari 04] Peikari, Cyrus & Chuvakin, Anton. Security
Warrior. Sebastopol, CA: O’Reilly, 2004.

[Saltzer 75] Saltzer, Jerome H. & Schroeder, Michael D. “The
Protection of Information in Computer Systems.”
Proceedings of the IEEE 63, 9 (September 1975):
1278-1308.

[Sessions 03] Sessions, Roger. Software Fortresses: Modeling
Enterprise Architectures. Boston, MA:
Addison-Wesley, 2003.

[Soo Hoo 01] Soo Hoo, Kevin; Sudbury, Andrew W.; & Jaquith,
Andrew R. “Tangible ROI through Secure
Software Engineering.” Secure Business Quarterly
1, 2 (2001).

[Spafford 89] Spafford, Eugene H. “Crisis and Aftermath.”
Communications of the ACM 32, 6 (1989).

[Spafford 95] Spafford, Eugene H. UNIX and Security: The
Influences of History. Information Systems
Security. Auerbach Publications, 1995.

[Sun 00] Sun Microsystems. Security Code Guidelines193,
2000.

[Swanson 96] Swanson, Marianne & Guttman, Barbara.
Generally Accepted Principles and Practices for
Securing Information Technology Systems.
National Institute of Standards and Guidelines
Computer Security Special Publication 800-14,
1996.

Source Code Analysis Tools - Overview 27
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52

http://www.networkmagazine.com/showArticle.jhtml?articleID=49901410
http://www.networkmagazine.com/showArticle.jhtml?articleID=49901410
http://java.sun.com/security/seccodeguide.html


194. http://st-www.cs.uiuc.edu/~hanmer/PLoP-97/Proceedings/proceedings.zip

1. mailto:copyright@cigital.com

[Swiderski 04] Swiderski, Frank & Snyder, Window. Threat
Modeling. Redmond, WA: Microsoft Press, 2004.

[Thompson 84] Thompson, Ken. “Reflections on Trusting Trust.”
Communications of the ACM 27, 8 (August 1984).

[Viega 00] Viega, John; McGraw, Gary; Mutdoseh, Tom; &
Felten, Edward W. “Statically Scanning Java
Code: Finding Security Vulnerabilities.” IEEE
Software 17, 5 (September-October 2000): 68-77.

[Viega 01] Viega, John & McGraw, Gary. Building Secure
Software: How to Avoid Security Problems the
Right Way. Boston, MA: Addison-Wesley
Professional, 2001.

[Viega 03] Viega, John & Messier, Matt. Secure
Programming Cookbook for C and C++.
Sebastopol, CA: O'Reilly, 2003 (ISBN
0596003943).

[Voas 97] Voas, Jeffrey & McGraw, Gary. Software Fault
Injection: Inoculating Programs Against Errors.
New York, NY: John Wiley & Sons, 1997.

[Whittaker 04] Whittaker, James A.; Thompson, Herbert H.; &
Thompson, Herbert. How to Break Software
Security. Boston, MA: Addison Wesley, 2004
(ISBN 0321194330).

[Yoder 98] Yoder, Joseph & Barcalow, Jeffrey. “Architectural
Patterns for Enabling Application Security194.”
Proceedings of the 1997 Pattern Languages of
Programming Conference. Monticello, Illinois,
Sept. 3-5, 1997. Washington University Technical
Report (wucs-97-34), 1998.

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005. Cigital-authored documents are sponsored by the U.S. Department of
Defense under Contract FA8721-05-C-0003. Cigital retains copyrights in all material produced under
this contract. The U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce
these documents, or allow others to do so, for U.S. Government purposes only pursuant to the copyright
license under the contract clause at 252.227-7013.

Permission to reproduce this document and to prepare derivative works from this document for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital,
including information about “Fair Use,” contact Cigital at copyright@cigital.com1.

Source Code Analysis Tools - Overview 28
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52

http://st-www.cs.uiuc.edu/~hanmer/PLoP-97/Proceedings/proceedings.zip
http://st-www.cs.uiuc.edu/~hanmer/PLoP-97/Proceedings/proceedings.zip
mailto:copyright@cigital.com


Fields

Name Value

Copyright Holder Cigital, Inc.

Fields

Name Value

is-content-area-overview true

Content Areas Tools/Code Analysis

SDLC Relevance Testing

Workflow State Publishable

Source Code Analysis Tools - Overview 29
ID: 263 | Version: 13 | Date: 18/08/06 16:18:52


